# 13. PRS subworld

The next subworld of P-world is PRS-subworld. Links belonging to it are obtained replacing digons in source links of P-world by RS-tangles. The symmetry rules determining such substitutions are the same as in PR *-subworld.

The same as in Table 8, the representatives of source links derived from 6* are: .2, .2.2, .2.2.2, .2.2.20, 2:2:2, .2.2.2.2, .2.2.2.20, .2.2.20.20 2.2.2.2 and 2.2.20.2. The generating PRS-links derived from them are given in Table 11:

Table 11

 n=9 .(2,2) n=10 .(~3 *,2) .(2,2).2 .(2,2)1 .(2,2+) n=11 .(2,2,2) .(~3 *,2).2 .(2,2).2.2 .(2,2).2.20 (2,2):2:2 .(~4 *,2) .(2,~3 *).2 .2.(2,2).2 .2.(2,2).20 .(~3 ^,~3 ^) .(2,2).~3 * .2.2.(2,2)0 .(~3 *,2)1 .(2,2+).2 .(2,2)~2 .(~3 *,2+) .(2,2+)1 .(2,2++) n=12 .(~3 *,2,2) .(2,2,2).2 .(~3 *,2).2.2 .(~3 *,2).2.20 (~3 *,2):2:2 .(2,2,2)1 .(~4 *,2).2 .(2,~3 *).2.2 .(2,~3 *).2.20 (2,2):~3 *:2 .(2,2,2+) .(2,~4 *).2 .2.(~3 *,2).2 .2.(~3 *,2).20 (2,2)1:2:2 .(~5 *,2) .(~3 ^,~3 ^).2 .(2,2).~3 *.2 .2.(2,~3 *).20 (2,2+):2:2 .(~4 *,~3 *) .(~3 *,2)1.2 .(2,2).2.~3 * .2.2.(~3 *,2)0 .(~4 *,2)1 .(2,~3 *)1.2 .~3 *.(2,2).2 .2.2.(2,~3 *)0 .(~3 ^,~3 ^)1 .(2,2)~2.2 .(2,2)1.2.2 .(2,2)1.2.20 .(~3 *,2)~2 .(~3 *,2).~3 * .2.(2,2)1.2 .2.(2,2)1.20 .(2,2)~3 .(2,~3 *).~3 * .(2,2+).2.2 .2.2.(2,2)10 .(~4 *,2+) .(2,2).~4 * .2.(2,2+).2 .(2,2).~3 *.20 .(~3 ^,~3 ^+) .(2,2).(2,2) .(2,2).2.~3 *0 .(~3 *,2+)1 .(~3 *,2+).2 .~3 *.(2,2).20 .(2,2+)~2 .(2,~3 *+).2 .2.(2,2).~3 *0 .(~3 *,2++) .(2,2+).~3 * .~3 *.2.(2,2)0 .(2,2++)1 .(2,2++).2 .2.~3 *.(2,2)0 .(2,2+).2.20 .2.(2,2+).20 .2.2.(2,2+)0 n=12 .(2,2).2.2.2 .(2,2).2.2.20 .(2,2).2.20.20 (2,2).2.2.2 (2,2).2.20.2 .2.(2,2).2.20 2.(2,2).2.2 2.(2,2).20.2 .2.2.(2,2).20 2.2.20.(2,2) .2.2.2.(2,2)0

In the same way, from the representatives 8*2, 8*2.2 and 8*2.20 (Table 9) we derive for n = 11 generating link 8*(2,2), and for n = 12 generating links 8*(~3 *,2), 8*(2,2)1, 8*(2,2+), 8*(2,2).2, 8*(2,2).20, 8*2.(2,2)0. From the representative 9*2 (Table 10) we derive for n = 12 generating link 9*(2,2).