Make your own free website on


[1] TURNER J.C., VAN DE GRIEND P. (Eds.) : History and Science of Knots. Singapoore, New Jersey, London, Hong Kong: World Scientific, 1995.

[2] BAIN, G.: Celtic Art - the Methods of Construction. New York: Dower, 1973.

[3] GERDES, P.: Reconstruction and extension of lost symmetries. Comput. Math. Appl. 17, 4-6 (1989) 791-813 (also in Symmetry: Unifying Human Understanding II, Ed. I.Hargittai).

[4] GERDES, P.: On ethnomathematical research and symmetry. Symmetry: Culture and Science 1, 2 (1990) 154-170.

[5] GERDES, P.: Geometria Sona. Instituto Superior pedagogico, Moçambique, 1993.

[6] GERDES, P.: Extensions of a reconstructed Tamil ring-pattern. in The Pattern Book: Fractals, Art and Nature, Ed. C.Pickower. World Scientific, Singapoore, 1995, pp. 377-379.

[7] GERDES, P.: Lunda Geometry - Designs, Polyominoes, Patterns, Symmetries. Universidade Pedagogica, Moçambique, 1996.

[8] GERDES, P.: On mirror curves and Lunda designs. Comput. & Graphics 21, 3 (1997) 371-378.

[9] BURDE G., ZIESCHANG H.: Knots. Berlin, New York: Walter de Greyter, 1985.

[10] ADAMS, C.C.: The Knot Book. New York: Freeman, 1994.

[11] DOWKER, C.H.; THISTLETHWAITE, M.B.: Classification of knot projections. Topology Appl. 16 (1983), 19-31.

[12] KIRKMAN T.P.: The enumeration, description and construction of knots of fewer than ten crossings. Trans. Roy. Soc. Edinburgh 32 (1885), 281-309.

[13] REIDEMEISTER K.: Knotentheorie. Berlin: Springer Verlag, 1932.

[14] CONWAY J.: An enumeration of knots and links and some of their related properties. Computational Problems in Abstract Algebra, Proc. Conf. Oxford 1967 (Ed. J. Leech), 329-358. New York: Pergamon Press, 1970.

[15] CAUDRON A.: Classification des noeuds et des enlancements. Public. Math. d'Orsay 82. Orsay: Univ. Paris Sud, Dept. Math., 1982.

[16] ROLFSEN D.: Knots and Links. Berkeley: Publish & Perish Inc., 1976.

[17] DOLL H., HOSTE J.: A tabulation of oriented links. Mathematics of Computation 57, 196 (1991), 747-761.

[18] STANLEY R.P.: Enumerative Combinatorics. Monterey (California): Wadsworth, Inc., 1986.

[19] FARMER D.W., STANFORD T.B.: Knots and Surfaces. Providence: American Mathematical Society, 1996.

[20] GRÜNBAUM B., SHEPHARD G.C.: Symmetry groups of knots. Mathematics Magazine 58, 3 (1985), 161-165.

[21] COXETER H.S.M., MOSER W.O.J.: Generators and Relations for Discrete Groups. New York: Springer Verlag, 1980.

[22] LIANG C., MISLOW K.: On amphicheiral knots. Journal of Mathematical Chemistry 15 (1994), 1-34.

[23] LIANG C., MISLOW K.: Topological chirality and achirality of links. Journal of Mathematical Chemistry 18 (1995), 1-24.

[24] LIANG C., MISLOW K.: A left-right classification of topologically chiral knots. Journal of Mathematical Chemistry 15 (1994), 35-62.

[25] LIANG C., CERF C., MISLOW K.: Specification of chirality for links and knots. Journal of Mathematical Chemistry 19 (1996), 241-263.

[26] CERF C.: Nullification writhe and chirality of alternating links. Journal of Knot Theory and Its Ramifications 6, 5 (1997), 621-632.

[27] CERF C.: Topological chirality of knots and links. Math. Chemistry, Vol.6 (Eds. D.Bonchev and D.H.Roovray) (to appear).

[28] LIANG C., JIANG Y.: The Chirality of Ground DNA Knots and Links. J. Theor. Biol. 158 (1992), 231-243.

[29] FLAPAN E.: Rigid and non-rigid achirality. Pacific Journal of Mathematics 129, 1 (1987), 57-66.

[30] FLAPAN E.: Topological Rubber Gloves. J. Math. Chem. (to appear).

[31] NAKANISHI Y.: A note on unknotting number. Math. Sem. Notes Kobe Univ. 9 (1981), 99-108.

[32] NAKANISHI Y.: Unknotting numbers and knot diagrams with the minimum crossings. Math. Sem. Notes Kobe Univ. 11 (1983), 257-258.

[33] BLEILER S.A.: A note on unknotting number. Math. Proc. Camb. Phil. Soc. 96 (1984), 469-471.

[34] BERNHARD J.A.: Unknotting numbers and their minimal knot diagrams. Journal of Knot Theory and Its Ramifications 3, 1 (1994), 1-5.

[35] KAWAUCHI A.: A Survey of Knot Theory. Appendix F. Basel, Boston, Berlin: Birkhäuser, 1996.

[36] ANDREWS G.E..: The Theory of Partitions. Reading (Mass.): Addison-Wesley, 1976.

[37] AITCHISON I.R., RUBINSTEIN J.H.: Combinatorial cubings, cusps and the dodecahedral knots. Collection: Topology '90 (Columbus, OH, 1990), Ohio St. Univ. Res. Publ. 1, 17-26. Berlin: de Greyter, 1992.

[38] BROERSMA H.J., DUIJVESTIJN A.J.W., GÖBEL G.: Generating All 3-Connected 4-Regular Planar Graphs from the Octahedron Graph. Journal of Graph Theory 17, 5 (1993), 613-620.

[39] LINDSRTÖM B., ZETERSTRÖM H.O.: Borromean circles are impossible. Amer. Math. Monthly 98 (1991), 340-341.

[40]CROMWEL P.: Borromean triangles in Viking art. Math. Intelligencer 17, 1 (1995), 3-4.

[41] COXETER H.S.M.: Symmetrical combinations of three and four hollow triangles. Math. Intelligencer 16, 3 (1994), 25-30.

[42] LIANG C., MISLOW K.: On Boromean links. J. Math. Chemistry 16 (1994), 27-35.

[43] TAIT P.G.: On knots. Trans. Roy. Soc. Edin. 28 (1876/77), 145-190.

[44] HARARY F., PALMER E.: Graphical Enumeration. New York, London: Academic Press, 1973.

[45] THISTLETHWAITE M.B., MENASCO W.W.: The classification of alternating links. Annals of Mathematics 138, 1 (1993), 113-171.

[46] JABLAN S.V.: Mirror generated curves. Symmetry: Culture and Science 6, 2 (1995), 275-278.

[47] HASEMAN M.G.: On knots with a census of the amphicheirals with twelve crossings. Trans. Roy. Soc. Edin. 52 (1918), 235-255.

[48] THISTLETHWAITE M.B.: Knots tabulations and related topics. in Aspects of Topology, Eds. I.M.James and E.H.Kronheimer, Cambridge: Cambridge University Press, 1985, 1-76.

[49] KAUFFMAN L.A.: On Knots. Princeton: Princeton University Press, 1987.

[50] LIVINGSTON C.: Knot Theory. Washington DC: The Mathematical Association of America, 1993.

[51] CAVICHIOLLI A., RUINI B., SPAGGIARI F.: On a conjecture of M.J.Dunwoody. (to appear).

WWW Sites

Centre for the Popularization of Mathematics

  • Exibition: Mathematics and Knots
  • Symbolic Sculptures and Mathematics

    Animated knots

    Atlas of Oriented Alternating Knots and Links by C.Cerf.

    DNA Borromean ring sequence

    Energy of Knots by J.Simon

    Fibonacci Numbers

    Finite Mathematics: Eulerian graphs

    Gallery of sculptures by John Robinson

    Geometry of Fullerenes (Tripod Server, USA)

    Geometry Junkyard

  • Knot Theory

    ISIS Symmetry (International Society for the Interdisciplinary Study of Symmetry)

    A Knot Theory Primer

    KnotPlot Site

    Louis H. Kauffman

    Morwen's Home Page/Knotscape

    Knots on the Web

    Mirror Curves (Tripod Server, USA)

    Modularity in Art (Tripod Server, USA)

    Mouse's Knot Theory Home Page

    On-Line Encyclopedia of Integer Sequences

    Planar algebras by Vaughan Jones


    Survey of Venn diagrams - Borromean rings

    The Knotty Dictionary of Kännet

    Untangling the Mathematics of Knots

    This work was supported by the Research Support Scheme of the OSI/HESP, grant No. 85/1997.

    The use in educational and noncomercial purposes is encuraged.
    For any other use of this material, the author's permition is necessary.
    All the illustrations are designed by the author in CorelDRAW®.
    Files are translated from TEX by TTH, version 1.0.

    The paper Ordering Knots is located at the address and