13. PRS subworld
The next subworld of P-world is PRS-subworld.
Links belonging to it are obtained replacing digons in source links of
P-world by RS-tangles. The symmetry rules determining such
substitutions are the same as in PR *-subworld.
The same as in Table 8, the representatives of source
links derived from 6* are: .2, .2.2, .2.2.2, .2.2.20, 2:2:2,
.2.2.2.2, .2.2.2.20, .2.2.20.20 2.2.2.2 and 2.2.20.2. The generating PRS-links
derived from them are given in Table 11:
Table 11
n=9 |
.(2,2) |
|
|
|
|
|
|
|
|
|
|
n=10 |
.(~3 *,2) |
.(2,2).2 |
|
|
|
|
.(2,2)1 |
|
|
|
|
|
.(2,2+) |
|
|
|
|
|
|
|
|
|
|
n=11 |
.(2,2,2) |
.(~3 *,2).2 |
.(2,2).2.2 |
.(2,2).2.20 |
(2,2):2:2 |
|
.(~4 *,2) |
.(2,~3 *).2 |
.2.(2,2).2 |
.2.(2,2).20 |
|
|
.(~3 ^,~3 ^) |
.(2,2).~3 * |
|
.2.2.(2,2)0 |
|
|
.(~3 *,2)1 |
.(2,2+).2 |
|
|
|
|
.(2,2)~2 |
|
|
|
|
|
.(~3 *,2+) |
|
|
|
|
|
.(2,2+)1 |
|
|
|
|
|
.(2,2++) |
|
|
|
|
|
|
|
|
|
|
n=12 |
.(~3 *,2,2) |
.(2,2,2).2 |
.(~3 *,2).2.2 |
.(~3 *,2).2.20 |
(~3 *,2):2:2 |
|
.(2,2,2)1 |
.(~4 *,2).2 |
.(2,~3 *).2.2 |
.(2,~3 *).2.20 |
(2,2):~3 *:2 |
|
.(2,2,2+) |
.(2,~4 *).2 |
.2.(~3 *,2).2 |
.2.(~3 *,2).20 |
(2,2)1:2:2 |
|
.(~5 *,2) |
.(~3 ^,~3 ^).2 |
.(2,2).~3 *.2 |
.2.(2,~3 *).20 |
(2,2+):2:2 |
|
.(~4 *,~3 *) |
.(~3 *,2)1.2 |
.(2,2).2.~3 * |
.2.2.(~3 *,2)0 |
|
|
.(~4 *,2)1 |
.(2,~3 *)1.2 |
.~3 *.(2,2).2 |
.2.2.(2,~3 *)0 |
|
|
.(~3 ^,~3 ^)1 |
.(2,2)~2.2 |
.(2,2)1.2.2 |
.(2,2)1.2.20 |
|
|
.(~3 *,2)~2 |
.(~3 *,2).~3 * |
.2.(2,2)1.2 |
.2.(2,2)1.20 |
|
|
.(2,2)~3 |
.(2,~3 *).~3 * |
.(2,2+).2.2 |
.2.2.(2,2)10 |
|
|
.(~4 *,2+) |
.(2,2).~4 * |
.2.(2,2+).2 |
.(2,2).~3 *.20 |
|
|
.(~3 ^,~3 ^+) |
.(2,2).(2,2) |
|
.(2,2).2.~3 *0 |
|
|
.(~3 *,2+)1 |
.(~3 *,2+).2 |
|
.~3 *.(2,2).20 |
|
|
.(2,2+)~2 |
.(2,~3 *+).2 |
|
.2.(2,2).~3 *0 |
|
|
.(~3 *,2++) |
.(2,2+).~3 * |
|
.~3 *.2.(2,2)0 |
|
|
.(2,2++)1 |
.(2,2++).2 |
|
.2.~3 *.(2,2)0 |
|
|
|
|
|
.(2,2+).2.20 |
|
|
|
|
|
.2.(2,2+).20 |
|
|
|
|
|
.2.2.(2,2+)0 |
|
|
|
|
|
|
|
n=12 |
.(2,2).2.2.2 |
.(2,2).2.2.20 |
.(2,2).2.20.20 |
(2,2).2.2.2 |
(2,2).2.20.2 |
|
|
.2.(2,2).2.20 |
|
2.(2,2).2.2 |
2.(2,2).20.2 |
|
|
.2.2.(2,2).20 |
|
|
2.2.20.(2,2) |
|
|
.2.2.2.(2,2)0 |
|
|
|
|
In the same way, from the representatives 8*2,
8*2.2 and 8*2.20 (Table 9) we derive for n
= 11 generating link 8*(2,2), and for n = 12 generating
links 8*(~3 *,2), 8*(2,2)1, 8*(2,2+),
8*(2,2).2, 8*(2,2).20, 8*2.(2,2)0. From
the representative 9*2 (Table 10) we derive for n = 12
generating link 9*(2,2).
|